On the comparison between OFDM and single carrier modulation with a DFE using a frequency-domain feedforward filter
نویسندگان
چکیده
Most comparisons between single carrier and multicarrier modulations assume frequency-domain linear equalization of the channel. In this paper we propose a new frequency-domain decision feedback equalizer (FD-DFE) for single carrier modulation, which makes use of a data block transmission format similar to that of the orthogonal frequency-division multiplexing with cyclic prefix (OFDM). The scheme is a nonadaptive DFE where the feedforward part is implemented in the frequency domain, while feedback signal is generated by time-domain filtering. Through simulations in a HIPERLAN-2 scenario, we show that FD-DFE yields a capacity very close to that of OFDM. This result is also confirmed by analytical derivations for a particular case. Furthermore, when no channel loading is considered, FD-DFE performs closely to OFDM for the same averaged frame error rate in a coded transmission. Design methods of the FD-DFE are investigated and a reduced complexity technique is developed, with the result that FD-DFE and OFDM have a similar computational complexity in signal processing.
منابع مشابه
Frequency Domain DFE: System Design and Comparison with OFDM
A novel frequency domain equalizer for single carrier modulation is presented. It performs as a decision feedback equalizer (DFE) with the feedforward operating in the frequency domain, and a feedback filtering in time domain. The new scheme makes use of a data block transmission format which can be seen as a generalization of the zero padded transmission. Performance comparisons between FD-DFE...
متن کاملUsing WPT as a New Method Instead of FFT for Improving the Performance of OFDM Modulation
Orthogonal frequency division multiplexing (OFDM) is used in order to provide immunity against very hostile multipath channels in many modern communication systems.. The OFDM technique divides the total available frequency bandwidth into several narrow bands. In conventional OFDM, FFT algorithm is used to provide orthogonal subcarriers. Intersymbol interference (ISI) and intercarrier interferen...
متن کاملEvaluation Performance of OFDM Mutlicarrier Modulation over Rayleigh and RicianStandard Channels Using WPT-OFDM Modulations
Last years, Wavelet Packet Modulation (WPM) or Wavelet Packet Transform based Orthogonal Frequency Division Multiplexing (WPT-OFDM) have been introduced to wired and wireless communication fields as efficient Multicarrier Modulation (MCM) techniques. The wavelets have interesting features such as flexibility, compatibility and localization in both time and frequency domains with no need to use ...
متن کاملSingle-Carrier Frequency-Domain Equalization for Orthogonal STBC over Frequency-Selective MIMO-PLC channels
In this paper we propose a new space diversity scheme for broadband PLC systems using orthogonal space-time block coding (OSTBC) transmission combined with single-carrier frequency-domain equalization (SC-FDE). To apply this diversity technique to PLC channels, we first propose a new technique for combining SC-FDE with OSTBCs applicable to all dispersive multipath channels impaired by impulsive...
متن کاملEmpirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation
This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system. In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Communications
دوره 50 شماره
صفحات -
تاریخ انتشار 2002